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Abstract We study a robust class of multidimensional non-uniformly hyperbolic transfor-
mations considered by Oliveira and Viana (Ergod. Theory Dyn. Syst. 28:501–533, 2008).
For an open class of Hölder continuous potentials with small variation we show that the
unique equilibrium state has exponential decay of correlations and that the distribution of
hitting times is asymptotically exponential. Furthermore, using that the equilibrium states
satisfy a weak Gibbs property we also prove log-normal fluctuations of the return times
around their average.

Keywords Decay of correlations · Equilibrium states · Non-uniform hyperbolicity ·
Hitting and return times

1 Introduction

The ongoing interest in the recurrence properties of deterministic dynamical systems was
strongly inspired by the relevance of the subject in statistical mechanics and by early con-
tributions of Poincaré. Indeed, if the phase space of a measure preserving dynamical system
is partitioned in cells of arbitrarily small diameter then not only the orbit of almost every
point returns arbitrarily close to itself as the return times in these fine scales reflect the pre-
dictability of the system. More precisely, the entropy of the system is strongly related to the
exponential growth rate of the return times of typical points in these finer scales.

Return time statistics attracted considerable attention in both mathematical and physics
literature. First models to study the asymptotic distribution of return times are shifts of
finite type endowed with a Bernoulli measure or i.i.d. random variables, where the strong
independence property guarantees that any two orbits will become independent after a very
short period of time, that the distribution of hitting times is asymptotically exponential and
that the return time statistics coincides with the mean hitting times statistics up to some
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neglectable error. If one tries to use this strategy in a general setting, some questions arise
naturally:

1. What is the distribution of the hitting times of the system when one considers sets of
arbitrary small measure?

2. How do return times oscillate around their average?

In general, an answer to these questions involves a deep knowledge of the system’s
chaotic features (expressed in terms of mixing properties) combined with information on
the measure of sets in small scales. The remarkable fact that uniformly hyperbolic dynami-
cal systems are (semi)conjugated to subshifts of finite type, by means of Markov partitions,
allowed Sinai, Ruelle and Bowen [4, 5, 23, 26] to extract many statistical properties of the
system from its codification. In particular, any equilibrium state (or measure minimizing the
free energy) associated to a sufficiently regular potential is indeed Bernoulli and satisfies a
Gibbs property. So, in the uniformly hyperbolic setting of [8, 15, 22] it was proved expo-
nential distribution of the hitting times and log-normal fluctuations of the return times in
the Ornstein-Weiss formula for the metric entropy (see [19]). Although uniformly hyper-
bolic dynamics arise in physical systems (see e.g. [17]) they do not include some relevant
classes of systems including the Manneville-Pomeau transformation (phenomena of inter-
mittency), Hénon maps and billiards with convex scatterers. We note that all the previous
systems present some non-uniformly hyperbolic behavior and its relevant measure satisfies
some weak Gibbs property. Nevertheless, the extension of the results on decay of correla-
tions, hitting and return time statistics beyond the scope of uniform hyperbolicity is still a
challenge and gained special attention in the few past years following the recent interest and
developments on the thermodynamical formalism for nonuniformly hyperbolic transforma-
tions. So, despite the effort of many authors, a general picture is still far from complete.
Some of the recent contributions, where the intricate connection between hitting and return
times, speed of mixing or memory loss, dimension theory and nonuniform hyperbolicity is
discussed include [1, 6, 7, 9, 10, 12–14, 16, 21, 24, 25], just to mention some of the most re-
cent advances. The majority of these results still deal with one-dimensional real or complex
dynamical systems.

Here we deal with a robust class of multidimensional non-uniformly hyperbolic transfor-
mations introduced by Oliveira and Viana [18], that contain maps obtained as deformations
by isotopy from expanding transformations as the ones considered in [2, Appendix]. De-
spite the existence of a (possibly non-generating) Markov partition many difficulties arise
from the multidimensional character of the system and the absence of bounded distortion. In
particular, higher dimensional intermittency phenomena due to the presence of indifferent
periodic points is allowed. Oliveira and Viana developed a thermodynamical formalism to
show that there is a unique equilibrium state for every Hölder potential with small variation
and, moreover, that is satisfies a weak Gibbs property. Roughly, we prove that if the tem-
perature is large enough then the equilibrium state has exponential decay of correlations,
satisfies the central limit theorem and has asymptotic exponential distribution of the hitting
times associated to rectangles of the refined Markov partition. Using this we obtain that the
fluctuations of the return times coincide with the ones of the Shannon-McMillan-Breiman
theorem, which are log-normal by the weak Gibbs condition. Indeed, let us point out that ex-
ponential return time statistics and log-normal fluctuations of return times are robust in this
nonuniformly hyperbolic setting. Our approach to obtain exponential return time statistics,
although similar in flavor with [21] and [12], faces distinct difficulties that arise from the
non hyperbolicity of the system. While the cornerstone in [21] was the non-Markov prop-
erty of partitions defining piecewise expanding maps of the interval, our main difficulties lie
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in the lack of bounded distortion and that the diameter of cylinders in the Markov partition
may not decrease to zero. For the sake of completeness, let us mention that Arbieto and
Matheus [3] proved exponential decay of correlations the equilibrium states constructed in
[18] but considered different classes of potentials and observables.

A very interesting question is to obtain exponential return time statistics to balls instead
of cylinders. Although this is possible to obtain for some examples in the one-dimensional
setting, the study of return time statistics to balls presents itself as a major difficulty in this
higher dimension setting. If such a result could be obtained we believe that our results could
be extended to the more general context of [27], where [18] is generalized and no Markov
partition is assumed to exist.

Overview This work is organized in the following way. In Sect. 2 we state our main results.
Some notations and tools to be used in the remaining of the paper are introduced in Sect. 3.
Our starting point to study the asymptotics of hitting and return times as statistical properties
of the equilibrium states is to estimate the decay of correlations, that is, the velocity at which

Cn(�,�) =
∣
∣
∣
∣

∫

�(� ◦ T n) dμ −
∫

�dμ

∫

� dμ

∣
∣
∣
∣

tends to zero as n → ∞ for any observable � and � in some reasonable space of functions.
In Sect. 4 we show that, for an open class of potentials, the Ruelle-Perron-Frobenius operator
satisfies the spectral gap property on a space Vθ of functions with essential bounded varia-
tion that contain Hölder continuous observables and characteristic functions at elements of
the dynamically generated partitions. Consequently, we obtain exponential decay of correla-
tions and the central limit theorem. In Sect. 5 the good mixing properties are used to deduce
exponential return time statistics. Finally, Sect. 6 is devoted to the proof of log-normal fluc-
tuations for the return times.

2 Statement of the Results

2.1 Setting

Let M denote a compact Riemannian manifold. We say that a set E ⊂ M has finite inner
diameter if there exists L > 0 such that any two points in E may be joined by a curve
of length less than L contained in E. Throughout, f : M → M will denote a C1 local
diffeomorphism satisfying conditions (H1) and (H2) below:

(H1) There are p ≥ 1, q ≥ 0, and a family Q = {Q1, . . . ,Qq,Qq+1, . . . ,Qq+p} of pairwise
disjoint open sets whose closures have finite inner diameter and cover the whole M ,
such that

– Every f |Q̄i is a homeomorphism onto its image
– If f (Qi) ∩ Qj �= ∅ then f (Qi) ⊃ Qj and, hence, f (Q̄i) ⊃ Q̄j

– There is N ≥ 1 such that f N(Qi) = M for every i

(H2) There are positive constants σ > 1 and L > 0 such that

– ‖Df (x)−1‖ ≤ σ−1 for every x ∈ Qq+1 ∪ · · · ∪ Qq+p

– ‖Df (x)−1‖ ≤ L for every x ∈ Q1 ∪ · · · ∪ Qq

where L is assumed to be close to be 1 in order to satisfy the relations (3).
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These conditions, which roughly mean that the transformation is expanding in some
(topologically) large region of M but may admit contracting behavior in the complement,
are satisfied a large class of local diffeomorphisms obtained by a local bifurcation of an
expanding transformation.

We will denote by φ : M → R an α-Hölder continuous potential with small oscillation,
in the sense that it satisfies

(H3a) supφ − infφ < log deg(f ) − logq

and condition (H3b) stated at the beginning of Sect. 4.2. These conditions are clearly satis-
fied by an open class of potentials containing the constant ones. Note that (H1), (H2) and
(H3a) are the assumptions in [18].

2.2 Equilibrium States and Conformal Measures

Given a continuous transformation f : M → M and a continuous potential φ : M → R, an
invariant probability measure μ is an equilibrium state for f with respect to φ if it attains
the supremum

Ptop(f,φ) = sup

{

hη(f ) +
∫

φ dη : η is f -invariant

}

given by the variational principle for the pressure (see e.g. [28]). The Ruelle-Perron-
Frobenius operator Lφ is the linear operator that acts in the space C(M) of continuous
functions by

Lφg(x) =
∑

f (y)=x

eφ(y)g(y).

The action of the dual operator L∗
φ on the space M(M) of probability measures is given

by
∫

g dL∗
φν = ∫

Lφg dν for every g ∈ C(M). We say that a measure ν is conformal if
there exists a strictly positive function Jνf (Jacobian of ν with respect to f ) such that
ν(f (A)) = ∫

Jνf dν for every measurable set A such that f | A is injective. It is not difficult
to see that any eigenmeasure ν for L∗

φ associated to a positive eigenvalue λ is a conformal
measure for f and that Jνf = λe−φ .

A sequence of positive integers (nk)k≥1 is non-lacunary if it is increasing and nk+1/nk →
1 when k tends to infinity. Consider the partition Q(n) = ∨n−1

j=0 f −j Q and let Qn(x) be the
element of Q(n) that contains x.

Definition 2.1 A probability measure ν is a non-lacunary Gibbs measure if there is K > 0
so that, for ν-almost every x ∈ M there exists some non-lacunary sequence (nk)k≥1, depend-
ing on x, such that

K−1 ≤ ν(Qnk
(x))

exp(−Pnk + Snk
φ(y))

≤ K

for every y ∈ Qnk
(x) and every k ≥ 1.

Finally, we recall the notion of hyperbolic time introduced in [2]. We say that n is a
c-hyperbolic time for x ∈ M if

n−1
∏

j=n−k

‖Df (f j (x))−1‖ < e−ck for every 1 ≤ k ≤ n. (1)
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Since the constant c will be fixed below, according to (2), we will refer to these simply as
hyperbolic times. We say that Qn ∈ Q(n) is an hyperbolic cylinder if n is a hyperbolic time
for every point in Qn. We denote by Q(n)

h the set of hyperbolic cylinders of order n and by
H the set of points that belong to the closure of infinitely many hyperbolic cylinders. We
say that a probability measure ν is expanding if it satisfies ν(H) = 1. The next theorem
summarizes the results by Oliveira, Viana [18] in this non-uniformly hyperbolic setting:

Theorem 2.2 [18] Assume that f is a C1 local diffeomorphism such that (H1) and (H2)
hold and φ : M → R is an Hölder continuous potential that satisfies (H3a). Then there exists
an expanding conformal measure ν such that L∗

φν = λν, where λ denotes the spectral radius
of the operator Lφ in the space C(M). Moreover, there is a unique equilibrium state μ for
f with respect to φ, it is absolutely continuous with respect to ν and it is a non-lacunary
Gibbs measure.

Throughout, μ and ν will always denote the probability measures given above.

2.3 Statement of the Main Results

First we introduce some necessary concepts. We consider a one parameter functional space
Vθ , introduced in [20], using the reference partition Q and the conformal measure ν. Given
θ > 0 and g ∈ L∞(ν) define the θ -variation of g (with respect to Q and ν) by

varθ (g) =
∑

n≥1

θn
∑

Qn∈Q(n)

eSnφ(Qn)osc(g, Qn),

where Snφ(Qn) = sup{∑n−1
j=0 φ(f j (x)) : x ∈ Qn} and osc(g, Qn) is the ν-essential variation

of g in Qn defined in Sect. 3.3. Let Vθ be the space of functions with essential θ -bounded
variation:

Vθ = {g ∈ L∞(ν) : ‖g‖θ < ∞},
where ‖ · ‖θ = ‖ · ‖∞ + varθ (·). Paccaut [20] proved that Vθ is a Banach space. We will say
that μ satisfies exponential decay of correlations if there exist C > 0 and ξ ∈ (0,1) such
that

Cn(�,�) :=
∣
∣
∣
∣

∫

�(� ◦ f n)dμ −
∫

�dμ

∫

�dμ

∣
∣
∣
∣
≤ Cξn‖�‖θ‖�‖L1(ν),

for every � ∈ L1(ν) and every � ∈ Vθ . A linear operator L in a Banach space B is quasi-
compact if there exists an L-invariant decomposition B = B0 ⊕B1 of the Banach space such
that B0 is finite dimensional and the spectrum of L|B0 is a finite number of eigenvalues of
absolute value r(L), and r(L|B1) < r(L). If dim(B0) = 1 then we say that L has a spectral
gap. Our first main result is the following:

Theorem A There exists a positive θ such that Lφ is quasi-compact and has a spectral gap
in the space Vθ . Moreover, μ has exponential decay of correlations in Vθ and the density
dμ/dν belongs to Vθ .
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Fix θ as above. The previous result implies that the correlation functions are summable.
Consequently, the asymptotic variance σ 2(�) defined by

σ 2(�) = ‖�‖L1(μ) + 2
∞
∑

j=1

∫

�(� ◦ f j ) dμ

is well defined for every � ∈ Vθ . Standard computations involving the spectral gap property
in the previous theorem (see e.g. [29]) are enough to obtain the Central Limit Theorem:

Corollary A Assume that � ∈ Vθ and that the asymptotic variance σ 2(�) is nonzero. Then
the distribution of the random variables

1

σ(�)
√

n

n−1
∑

j=0

(

� ◦ f j −
∫

�dμ

)

converges to the normal distribution N (0,1) as n tends to infinity. Moreover, σ(�) = 0 if
and only if there exists a measurable function �̃ such that � = �̃ ◦ f − �̃.

Our next aim is to study the asymptotics of hitting times. Given a set Q consider the
hitting time τQ defined as

τQ(x) = inf{k ≥ 1 : f k(x) ∈ Q}.

We study the deviation of the hitting times from its average given by Kac’s formula:
∫

τQ dμ = μ(Q)−1. Indeed, we use that the potential φ belongs to Vθ (see Lemma 4.9)
and the good mixing properties to show exponential return time statistics for the hitting time
of most cylinders.

Theorem B There are positive constants K and β , and for every ε > 0 there exists
Nε ≥ 1 such that the following holds: for any n ≥ Nε there exists a subset Q(n)

ε of n-cylinders
satisfying

(1) μ(∪{Qn : Qn ∈ Q(n)
ε }) ≥ 1 − ε;

(2) For every Q ∈ Q(n)
ε

sup
t≥0

∣
∣
∣
∣
μ

(

τQ >
t

μ(Q)

)

− e−t

∣
∣
∣
∣
≤ Ke−βn.

This theorem asserts that the distribution of the hitting times is asymptotically exponen-
tial and that the convergence is in a strong sense for the majority of the cylinders. This is very
useful to study the fluctuations of the return times around the average in Ornstein-Weiss’s
theorem. Since μ is ergodic, if n ≥ 1 and

Rn(x) = inf{k ≥ 1 : f k(x) ∈ Q(n)(x)}

denotes the nth return time map then Ornstein-Weiss’s theorem asserts that

hμ(f, Q) = lim
n→∞

1

n
logRn(x), for μ-a.e. x.
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We shall see later on that the diameter of Qn(x) tends to zero as n → ∞ at μ-almost every x,
which shows that Q is a generating partition for μ. We study the fluctuation of the random
variables logRn around the average nhμ(f ).

Theorem C Assume that σ 2(φ) is positive. Then the following convergence in distribution
holds:

logRn − nhμ(f )

σ (φ)
√

n

D−−−−→
n→+∞ N (0,1),

where N (0,1) denotes the standard zero mean Gaussian.

3 Preliminaries

In this section we recall some necessary concepts that will be used later on. The reader may
choose to omit this section in a first reading and to come back here when necessary.

3.1 Hyperbolic Times

Here we collect some results from Sects. 3 and 4 in [18] (see also [27]), whose proofs we
shall omit. Fix ε0 > 0 such that supφ − infφ < log deg(f ) − logq − ε0 and set P = logλ.

Proposition 3.1 There exists γ1 > 0 such that the measure ν(Qn) ≤ e−γ1n for every cylinder
Qn ∈ Q(n). There exists γ ∈ (0,1) and cγ ≤ logq + ε0 such that the cardinality of cylinders
in

B(n,γ ) = {

Qn ∈ Q(n) | #{0 ≤ j ≤ n − 1 : f j (Qn) ⊂ Q1 ∪ · · · ∪ Qq} > γn
}

is bounded from above by exp(cγ n) for every large n. Moreover, the measure ν(B(γ,n))

decreases exponentially fast as n → ∞.

We are now in a position to state the precise condition on the constant L > 0 in (H1) that
is chosen in a different way from [18]. Pick c > 0 such that

σ−(1−γ ) < e−2c < 1 and logq + cα + ε0 < log deg(f ), (2)

where α > 0 denotes the Hölder exponent of the potential φ. Assume that L is sufficiently
close to one such that (logL)2 ≤ 2c2,

σ−(1−γ )Lγ < e−2c < 1 and supφ − infφ < log deg(f ) − logq − m logL. (3)

Lemma 3.2 [18, Lemma 4.4] There exists τ ∈ (0,1) such that, for any n ≥ 1 and any x /∈
B(γ,n), there exists l > τn and integers 1 ≤ n1 < · · · < nl such that x belongs to the closure
of an hyperbolic cylinder Qni

∈ Qni

h for every i = 1, . . . , l. Furthermore, τ ≥ 2c/A where
A = logL.

Since 0 < τ < 1, our choice of c in (2) guarantees that logq+cτα+ε0 < log deg(f ). The
following lemma asserts backward distances contraction and a Gibbs property at hyperbolic
times.
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Lemma 3.3 Given Qn ∈ Q(n)
h , 1 ≤ j and x, y in the closure of Qn,

df n−j (Q̄n)(f
n−j (x), f n−j (y)) ≤ e−cj diam(Q).

Moreover, there exists K > 0 (independent of n) such that every y ∈ Qn satisfies

K−1 ≤ ν(Qn)

exp(−Pn + Snφ(y))
≤ K.

As an immediate consequence we obtain that the diameter of most cylinders decrease
exponentially fast. More precisely,

Corollary 3.4 The diameter of every cylinder Qn /∈ B(n) satisfies

diam(Qn) ≤ e−cτn diam(Q).

Proof Given Qn /∈ B(n), there exists a positive integer k ≥ τn such that k is a simultaneous
hyperbolic time for every point in Qn. By the mean value theorem

diam(Qn) ≤ e−ck diam(f k(Qn)) ≤ e−cτn diam(Q),

which proves the corollary. �

Remark 3.5 Observe that #Q(n) ≤ #Q deg(f )n−1 for every positive integer n, as an easy
consequence of the Markov property and that every point has deg(f ) preimages. Indeed,
given n ∈ N, the Markov assumption on Q implies that Q(n) = f −n+1(Q). On the other
hand, given Q ∈ Q, f −n(Q) is the union of deg(f )n cylinders. This shows that #Q(n) ≤
#Q deg(f )n for every n ≥ 1.

We say that a measure η is exact if every element in the tail sigma-algebra B∞ =
⋂

j≥0 f −j B is η-trivial in the sense that it has measure zero or one.

Lemma 3.6 μ is exact.

Proof This is a direct consequence of [27, Lemma 6.16]. �

3.2 Weak Gibbs Property

Since μ is absolutely continuous with respect to ν and the density dμ/dν is bounded away
from zero and infinity (see [18]), then μ satisfies the non-lacunary Gibbs property. Here we
establish a criterium that relates the decay of the first hyperbolic time map with a weak Gibbs
property similar to the one introduced by Yuri [30]. Let n1 denote the first simultaneous
hyperbolic time map.

Lemma 3.7 There are almost everywhere defined function (Kn)n≥1 such that

K−1
n (x) ≤ ν(Qn(x))

exp(−Pn + Snφ(y))
≤ Kn(x)
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for ν-almost every x and every y ∈ Qn(x), and

μ
(

x ∈ M : Kn(x) > a(n)
)

≤ nμ

(

x ∈ M : n1(x) >
loga(n)

P + sup |φ|
)

for any sequence a(n). In particular, limn
1
n

logKn = 0 almost everywhere.

Proof The proof of this lemma goes along the same ideas in [18, Lemma 3.12]. Given n ∈ N

and x ∈ M set Kn(x) = K exp[(P + sup |φ|)(ni+1(x)−ni(x))], where i is a positive integer
such that ni(x) ≤ n < ni+1(x) and ni denotes the ith simultaneous hyperbolic time map. It
is not hard to show that Kn verifies the Gibbs relation above. Moreover,

μ
(

x ∈ M : Kn(x) > a(n)
)

≤ μ

(
⋃

i

{

x : n1(f
ni (x)(x)) >

loga(n)

P + sup |φ|
})

≤ nμ

(

x ∈ M : n1(x) >
loga(n)

P + sup |φ|
)

,

where we made use of the invariance of μ and that n1(f
ni (x)(x)) ≥ ni+1(x)−ni(x). The last

claim in the lemma is a direct consequence of the decay estimates. �

Corollary 3.8 There exists a ∈ N such that μ-almost every x satisfies Kn(x) < na for all
but finitely many values of n.

Proof We use the inclusion {n1 > loga(n)} ⊂ B(γ, loga(n)). If a ∈ N is large enough it
follows from the previous result that

μ
(

x ∈ M : Kn(x) > na
)

≤ n exp

(

− cγ a

P + sup |φ| logn

)

≤ n−2,

which is summable. Our claim follows directly from Borel-Cantelli’s lemma. �

This result gives a sufficient condition to obtain sub-exponential growth of the sequence
(Kn(x))n≥1 in the weak Gibbs property that will be of particular interest for the proof of the
log-normal fluctuations of the return times in Sect. 6.

3.3 Essential Oscillation and Variation

In this section we present some basic lemmas, needed for the proof of a Lasota-Yorke
inequality in Sect. 4.2. Given g ∈ L∞(ν) and a set E we define the essential oscillation
osc(g,E) of g on the set E (with respect to ν) as

osc(g,E) = ν − ess sup{|g(x) − g(y)| : x, y ∈ E}.
Analogously, sup(g,E) and inf(g,E) will denote, respectively, the essential supremum and
essential infimum of g in the set E. The following is an immediate consequence of the
triangular inequality.

Lemma 3.9 For every g,h ∈ L∞(ν) and any set E it holds that

osc(gh,E) ≤ osc(g,E)sup(h,E) + sup(g,E)osc(h,E).
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In the next lemma we give an estimate on the oscillation of the α-Hölder continuous
potential φ in cylinders with positive frequency of hyperbolic times.

Lemma 3.10 There exists Cφ > 0 such that

osc(eφ,Qn) ≤ Cφe−cταn diam(Q)α, for every Qn /∈ B(n).

Proof Observe that eφ is an α-Hölder continuous function for some positive constant Cφ .
Therefore, it follows from Corollary 3.4 that

|eφ(x) − eφ(y)| ≤ Cφ diam(Qn)
α ≤ Cφe−cταn diam(Q)α

for every Qn /∈ B(γ,n) and every x, y ∈ Qn. This proves the lemma. �

The following lemma plays a key role in the proof of the Lasota-Yorke inequality.

Lemma 3.11 Given a positive ν-measure set E and g ∈ L∞(ν),

sup(g,E) ≤ osc(g,E) + 1

ν(E)

∫

E

|g|dν.

Proof Observe that |g(x)| ≤ |g(x) − g(y)| + |g(y)| ≤ osc(g,E) + |g(y)| for almost every
x, y ∈ E. In particular, integrating both sides of the previous inequality with respect to y

it follows that |g(x)| ≤ osc(g,E) + 1
ν(E)

∫

E
|g|dν for ν-almost every x ∈ E. The lemma is

now a direct consequence of the previous relation. �

Denote by f k
Qk

the restriction of f k to the cylinder Qk and observe that it is a bijection

onto its image. When no confusion is possible we will denote by Qn+k the cylinder f −k
Qk

(Qn).

Lemma 3.12 Given any positive integers k, n and cylinders Qk ∈ Q(k) and Qn ∈ Q(n) it
holds that

e
Sn+kφ(f −k

Qn
(Qn)) ≤ eSnφ(Qn)e

Skφ(f −k
Qk

(Qn)) ≤ e(supφ−infφ)ke
Sn+kφ(f −k

Qk
(Qn))

.

Proof Fix Qk ∈ Q(k) and Qn ∈ Q(n). The first inequality is obvious. On the other hand, the
Markov property implies that f n(Qn+k) = Qk . If x ∈ Qn, y ∈ Qk are such that attain the
maximum values in eSnφ(Qn) and eSkφ(Qk), respectively, then

eSn+kφ(Qn+k) ≥ e
Sn+kφ(f −k

Qk
(x)) = e

Skφ(f −k
Qk

(x))
eSnφ(x).

It follows immediately that

eSkφ(Qk)eSnφ(Qn) ≤ e
Skφ(y)−Skφ(f −k

Qk
(x))

eSn+kφ(Qn+k) ≤ e(supφ−infφ)keSn+kφ(Qn+k),

which proves the lemma. �

Since the diameter of cylinders Qn /∈ B(n) decrease exponentially fast with n, the oscil-
lation of an Hölder observable over such cylinders is also decreasing.
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Lemma 3.13 Given k ≥ 1 there exists C0 > 0 (depending on k) such that, if n is large
enough then

osc(eSkφ, f −k
Qk

(Qn)) ≤ C0 sup(eSkφ, f −k
Qk

(Qn))e
−cταn

for every Qk ∈ Q(k) and Qn /∈ B(n).

Proof Let k ≥ 1 and Qk ∈ Q(k) be fixed. Since φ is α-Hölder continuous there is C > 0 so
that

|Skφ(x) − Skφ(y)| ≤
k−1
∑

j=0

|φ(f j (x)) − φ(f j (y))| ≤
k−1
∑

j=0

C d(f j (x), f j (y))α

for any x, y ∈ f −k
Qk

(Qn). The term in the right hand side is clearly bounded by

Ck max
0≤j≤k−1

diam(f j (Qn+k))
α.

Recall that ‖Df (x)−1‖ ≤ L for every x ∈ M by (H2). In particular it follows from Corol-
lary 3.4 that |Skφ(x) − Skφ(y)| ≤ Ck max{1,Lk}α diam(Qn)

α is arbitrarily close to zero if
n is large. Since |et − 1| ≤ 2|t | for every t ∈ (−1,1) we conclude that |eSkφ(x) − eSkφ(y)| ≤
eSkφ(Qn+k)|1 − eSkφ(y)−Skφ(x)| ≤ eSkφ(Qn+k)C0e

−cταn, where

C0(k) = 2Ck max{1,Lk}α (4)

is independent of n. Since x and y where chosen arbitrary this completes the proof of the
lemma. �

4 Spectral Gap for the Ruelle-Perron-Frobenius Operator

In this section we prove that the Ruelle-Perron-Frobenius operator has a spectral gap in the
space Vθ of functions of essential bounded variation for special choices of the parameter θ .
As a consequence we show that the density dμ/dν belongs to Vθ , and that the equilibrium
state μ has exponential decay of correlations and satisfies a central limit theorem.

4.1 Continuity of the Ruelle-Perron-Frobenius Operator

For notational simplicity we denote the Ruelle-Perron-Frobenius operator Lφ simply by L.
First we show that the operator L is continuous in the Banach space Vθ , provided that the
parameter θ is small. More precisely,

Lemma 4.1 If θelog deg(f )+supφe−cτα < 1 then L is a continuous operator in Vθ : there is a
positive constant C such that ‖Lg‖θ ≤ C‖g‖θ , for every g ∈ Vθ .

Proof Let θ > 0 be such that θelog deg(f )+supφe−cτα < 1. Given g ∈ Vθ we can write

Lg(x) =
∑

Q∈Q

e
φ◦f −1

Q
(x)

g ◦ f −1
Q (x)1f (Q)(x).
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It is clear that ‖Lg‖∞ is bounded from above by #Qesupφ‖g‖∞. Thus, to prove the lemma
we are reduced to show that there exists a constant C > 0 such that

varθ (Lg) :=
∑

n≥0

θn
∑

Qn∈Q(n)

eSnφ(Qn)osc(Lg,Qn) ≤ C‖g‖θ , ∀g ∈ Vθ . (5)

To bound the term involving the oscillation of Lg notice that, for every Qn ∈ Q(n)

osc(Lg,Qn) ≤
∑

Q∈Q

osc(eφ◦f −1
Q g ◦ f −1

Q ,Qn)

≤
∑

Q∈Q

[

osc(eφ, f −1
Q (Qn))sup(g) + sup(eφ)osc(g, f −1

Q (Qn))
]

.

Now we deal with the sum over elements Qn ∈ Q(n) in (5) by dividing it in two parts,
according to whether Qn belongs or not to B(n). Since osc(h) ≤ 2sup(|h|) for every h ∈
L∞(ν) and #B(γ,n) ≤ e(logq+ε0)n for every large n,

∑

Qn∈B(n)

eSnφ(Qn)osc(Lg,Qn) ≤ #B(γ,n)esup(φ)n × 2#Q‖eφg‖∞

≤ C1e
(logq+supφ+ε0)n‖g‖∞,

for some constant C1 depending only on φ and Q. On the other hand

∑

Qn /∈B(n)

eSnφ(Qn)osc(Lg,Qn)

≤
∑

Qn /∈B(n)

∑

Q∈Q

eSnφ(Qn)
[

osc(eφ, f −1
Q (Qn))sup(g) + sup(eφ)osc(g, f −1

Q (Qn))
]

.

Lemma 3.10 implies that the right hand side above is bounded by

C2

∑

Qn+1∈Q(n+1)

f (Qn+1)/∈B(n)

eSn+1φ(Qn+1)Cφe−cταn(diam Q)α‖g‖∞

+ C2

∑

Qn+1∈Q(n+1)

f (Qn+1)/∈B(n)

eSn+1φ(Qn+1)osc(g,Qn+1)

for some positive constant C2 (depending only on φ). We deduce that there is C3 > 0 (de-
pending on φ, τ , α, Q) such that varθ (Lg) is bounded from above by the sum of two terms:

(a)
∞
∑

n=1

θn

[

C1e
(logq+supφ+ε0)n + C3e

−cταn
∑

Qn+1∈Q(n+1)

eSn+1φ(Qn+1)

]

‖g‖∞

and

(b)
1

θ

∞
∑

n=0

θn+1C2

∑

Qn+1∈Q(n+1)

eSn+1φ(Qn+1)osc(g,Qn+1).
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In particular it follows that varθ (Lg) is bounded by

C2
1

θ
varθ (g) +

∞
∑

n=0

[

C1θ
ne(logq+supφ+ε0)n + C3#Qθne(log deg(f )+supφ)ne−cταn

]

‖g‖∞.

Our choice of the parameter θ together with the relation logq + cτα + ε0 < log deg(f )

guarantees the summability of the previous series and proves that L is a continuous operator
in Vθ . �

Let us stress out that the proof of the previous lemma yields the existence of a constant
C ′ > 0 such that varθ (Lg) ≤ C2

1
θ
varθ (g) + C ′‖g‖∞, for every small θ . However, the term

1
θ
varθ (g) increases as θ gets smaller. In particular, the smaller θ is the higher the oscillations

that may occur in elements of Vθ .

4.2 Spectral Gap and Decay of Correlations

Here we prove a Lasota-Yorke inequality for the Ruelle-Perron-Frobenius operator. This
will finally imply on exponential decay of correlations and central limit theorem for the
equilibrium state. Throughout, let θ be fixed and such that

(�)

⎧

⎪⎨

⎪⎩

θelog deg(f )+infφ > Lα > 1,

θelog deg(f )+2 infφ−supφ > Lα > 1,

θelog deg(f )+supφe−cτα < 1.

Some comments on (�) are in order. Notice that the third condition is the one required in
Lemma 4.1. On the other hand, our choice of the parameter θ impose certain restrictions on
the potential φ. We are now in a position to state our second small variation condition on φ:

(H3b) supφ − infφ <
1

2
(cτ − logL)α.

Remark 4.2 This condition is clearly satisfied by an open class of nearly constant potentials.
Indeed, by construction, cτ ≥ 2c2/ logL > logL. Note also that (4.2) legitimates the choice
in (�).

Let rθ (Lφ) and r(Lφ) denote, respectively, the spectral radius of Lφ in the Banach spaces
Vθ and C(M). Since ‖Ln1‖θ ≥ ‖Ln1‖∞ for every n ∈ N then clearly

rθ (Lφ) = lim
n→∞(‖Ln

φ‖θ )
1
n ≥ lim

n→∞(‖Ln
φ1‖∞)

1
n ≥ deg(f )einfφ,

which proves that deg(f )einfφ is simultaneously a lower bound for both spectral radius
rθ (Lφ) and r(Lφ). For the time being, let λ0 denote any positive number larger than
deg(f )einfφ . Observe that the previous choice of θ guarantees that θλ0 > Lα > 1 and
θλ0e

−(supφ−infφ) > Lα > 1.

Proposition 4.3 There are B1 and ξ ∈ (0,1) such that, for every large k ≥ 1 there is
B2(k) > 0 satisfying

varθ (λ
−k
0 Lkg) ≤ B1ξ

kvarθ (g) + B2(k)‖g‖L1(ν).
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Proof Let k ≥ 1 be fixed and let Qk denote the elements of the partition Q(k). Observe that

Lkg =
∑

Qk

e
(Skφ)◦f −k

Qk g ◦ f −k
Qk

1f k(Qk).

Given g ∈ Vθ , using sup(g,Qk) to majorate sup(g,Qn+k) and Lemma 3.11, it is not hard to
see that varθ (λ

−k
0 Lkg) is bounded from above by the sum of the following three terms:

(λ0θ)−k

∞
∑

n=0

θn+k
∑

Qn

∑

Qk

eSnφ(Qn) osc(eSkφ,Qn+k)osc(g,Qk), (6)

(λ0θ)−k

∞
∑

n=0

θn+k
∑

Qn

∑

Qk

eSnφ(Qn) osc(eSkφ,Qn+k)
1

ν(Qk)

∫

Qk

g dν, (7)

and

(λ0θ)−k

∞
∑

n=0

θn+k
∑

Qn

∑

Qk

eSnφ(Qn)eSkφ(Qn+k)osc(g,Qn+k). (8)

We deal with these three terms separately. First we treat (6) by rewriting it as

(λ0θ)−k

∞
∑

n=0

[

θn
∑

Qn

eSnφ(Qn)

][

θk
∑

Qk

osc(eSkφ,Qn+k)osc(g,Qk)

]

and dividing the sum over elements in Q(n) according to whether they belong or not to B(n).
Using osc(g,E) ≤ 2sup(g,E) it follows that (6) is bounded by the sum of the two following
terms:

(λ0θ)−k

∞
∑

n=0

[

θn
∑

Qn∈B(n)

eSnφ(Qn)

][

θk
∑

Qk

2 sup(eSkφ,Qk)osc(g,Qk)

]

and

(λ0θ)−k

∞
∑

n=0

[

θn
∑

Qn /∈B(n)

eSnφ(Qn)

][

θk
∑

Qk

C0(k) sup(eSkφ,Qk)e
−cταnosc(g,Qk)

]

,

where C0(k) is given by (4) in Lemma 3.13. Our choice on θ yields that the two previous
terms are bounded from above by C0(k)(λ0θ)−kvarθ (g) up to finite multiplicative constants.
The constants involved are 2

∑∞
n=0(θelogq+supφ+ε0)n and

∑∞
n=0(θelog deg(f )+supφe−cτα)n, re-

spectively.
On the one hand, (7) is clearly bounded by ‖g‖L1(ν) up to a multiplicative term obtained

as the sum over all n ≥ 0 of

λ−k
0 maxν(Qk)

−1θn
∑

Qn

∑

Qk

eSnφ(Qn) osc(eSkφ,Qn+k).

Since the measure ν gives positive weight to any cylinder in Q(k), this shows that there
exists a positive constant K0(k) such that (7) is bounded from above by ‖g‖L1 up to the
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multiplicative term

K0(k)

∞
∑

n=0

θn
∑

Qn

∑

Qk

eSnφ(Qn) osc(eSkφ,Qn+k).

The part of the sum involving elements Qn ∈ Q(n) that belong to B(n) is finite because
those elements grow exponentially slow compared with the allowed size of the oscillations.
Indeed,

∞
∑

n=0

θn
∑

Qn∈B(n)

∑

Qk

eSnφ(Qn) osc(eSkφ,Qn+k) ≤ 2#Q(k)ek supφ

∞
∑

n=0

(

θelogq+supφ+ε0
)n

is finite. In turn, the sum over elements Qn that do not belong B(n) is also finite by
Lemma 3.13:

∞
∑

n=0

θn
∑

Qn /∈B(n)

∑

Qk

eSnφ(Qn) osc(eSkφ,Qn+k)

≤
∞
∑

n=0

θn
∑

Qn /∈B(n)

∑

Qk

eSnφ(Qn)C0e
Skφ(Qn+k)e−cταn

≤ C0#Q(k)ek supφ

∞
∑

n=0

[

θelog deg(f )+supφe−cτα
]n

< ∞.

This shows that (7) is bounded from above by ‖g‖L1 up to a multiplicative constant B2(k).
On the other hand Lemma 3.12 ensures that (8) is bounded by

(λ0θe−(supφ−infφ))−k

∞
∑

n=0

θn+k
∑

Qn+k∈Q(n+k)

eSn+kφ(Qn+k)osc(g,Qn+k)

≤ (λ0θe−(supφ−infφ))−kvarθ (g).

It follows that varθ (λ
−k
0 Lkg) ≤ B1ξ

kvarθ (g) + B2(k)‖g‖L1 , for a constant ξ is given by
ξ = max{(λ0θ)−1, (λ0θe−(supφ−infφ))−1} 1

k
logC0(k). Our first and second conditions on θ

imply that ξ is strictly smaller than one. This completes the proof of the proposition. �

As a direct consequence we obtain the following:

Corollary 4.4 (Lasota-Yorke Inequality) There are positive constants D1,D2 and ξ1 ∈
(0,1) such that

varθ (λ
−n
0 Lng) ≤ D1ξ

n
1 varθ (g) + D2‖g‖L1(ν),

for every n ≥ 1.

Proof Let B1 and ξ be given as in the previous proposition. Pick k ≥ 1 such that ξ1 :=
k
√

B1ξk < 1 and, for any given n ≥ 1, write n = jk + r where j is a positive integer and
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0 ≤ r ≤ k−1. If one applies Proposition 4.3 recursively and note that λ−1
0 L does not increase

the L(ν)-norm, because ν is conformal, it follows that

varθ (λ
−n
0 Lng) ≤ ξ

kj

1 varθ (λ
−r
0 Lrg) + B2(k)

(
∑

�≥0

ξ�
1

)

‖g‖1.

Moreover, Proposition 4.3 also guarantees that

varθ (λ
−r
0 Lnr) ≤ B1varθ (g) + max

1≤�≤k
B2(�)‖g‖1.

The corollary is then immediate taking D2 = max1≤�≤k B2(�) + B2(k)(
∑

�≥0 ξ�
1 ) and D1 =

B1ξ
−k
1 . �

We proceed to prove that the Ruelle-Perron-Frobenius Lφ is quasi-compact in the func-
tional space Vθ for any parameter θ as above. Since λ := r(Lφ) ≥ deg(f )einfφ the previous
results hold with λ0 = λ. First we show that the iterates of λ−1 Lφ are well approximated by
operators of finite rank. Let An be the linear operator defined in Vθ by

An(g) = λ−nLn
(

Eν(g | Q(n))
)

for every g ∈ Vθ , where Eν(· | Q(n)) stands for the conditional expectation with respect to
the partition Q(n). Since the partitions Q(n) have finitely many elements then it is not hard to
see that each An is a linear operator of finite rank, hence compact. In addition,

Lemma 4.5 There is C > 0 and ξ1 ∈ (0,1) such that

‖λ−nLn − An‖θ ≤ Cξn
1 .

Proof First we bound the L∞(ν) part in ‖ · ‖θ . Given g ∈ Vθ ,

‖λ−nLng − Ang‖∞ = λ−n‖Ln
(

g − E(g | Q(n))
)‖∞

= λ−n

∥
∥
∥
∥

∑

Qn

e
(Snφ)◦f −n

Qn

[

g ◦ f −n
Qn

− Eν(g | Q(n)) ◦ f −n
Qn

]

1f n(Qn)

∥
∥
∥
∥

∞
.

Moreover, for any Qn ∈ Q(n) the difference between g and Eν(g | Q(n)) computed over the
preimages of f −n

Qn
in the term above satisfies

∣
∣g ◦ f −n

Qn
(x)− Eν(g | Q(n)) ◦ f −n

Qn
(x)

∣
∣≤ 1

ν(Qn)

∫

Qn

|g(f −n
Qn

(x))− g(z)|dν(z) ≤ osc(g,Qn).

In particular, we deduce that the L∞ term involved in the computation of the norm ‖ · ‖θ

decreases exponentially fast:

‖λ−nLng − Ang‖∞ ≤ λ−n
∑

Qn

eSnφ(Qn)osc(g,Qn) ≤ (θλ)−nvarθ (g).
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The variation term in ‖ · ‖θ can be bounded analogously, using Lemma 3.9 as in the proof of
the Lasota-Yorke inequality. Indeed,

varθ (λ
−nLng − Ang) ≤ λ−n

∞
∑

k=0

θk
∑

Qk

∑

Qn

eSkφ(Qk)osc(eSnφ,Qn+k)sup(gn,Qn+k)

+ λ−n

∞
∑

k=0

θk
∑

Qk

∑

Qn

eSkφ(Qk)eSnφ(Qn+k)osc(gn,Qn+k),

where gn = g − E(g | Q(n)) and Qn+k = f −n
Qn

(Qk). Since Eν(g | Q(n)) is constant over the
elements in Q(n), clearly osc(gn,Qn+k) = osc(g,Qn+k). In consequence the second term
in the right hand side of the sum above coincides with (8), which in turn is bounded by
(λθe−(supφ−infφ))−nvarθ (g). On the other hand, the first term above can be bounded as in (6)
by C(λθL−α)−nvarθ (g), for some positive constant C that does not depend on n, because

sup(gn,Qn+k) ≤ sup(gn,Qn) ≤ osc(gn,Qn) + 1

ν(Qn)

∫

Qn

gn dν

and
∫

Qn
gn dν = 0. In consequence, there exists C > 0 and 0 < ξ < 1 such that

varθ (λ
−nLng − Ang) ≤ Cξn‖g‖θ .

Since this θ -variation term also decreases exponentially fast as n tends to infinity, this com-
pletes the proof of the lemma. �

An interesting consequence of the previous lemma is that the spectral radius of the
Ruelle-Perron-Frobenius operator Lφ in the Banach spaces C(M) and Vθ do coincide.

Lemma 4.6 rθ (Lφ) = r(Lφ).

Proof The spectral radius r(L) of the linear operator Lφ in the space C(M) of continuous
functions is clearly greater or equal than deg(f )einfφ . Thus, the Lasota-Yorke inequality in
Corollary 4.4 with λ = r(L) guarantees that there exists a uniform constant C > 0 such that
varθ (λ−nLng) ≤ C‖g‖θ for every n ∈ N. Using ‖ · ‖1 ≤ ‖ · ‖∞, this proves that there exists
a uniform constant C > 0 such that ‖λ−nLng‖θ ≤ C‖g‖θ for every g ∈ Vθ and n ∈ N. In
consequence, the spectral radius rθ (λ

−1 Lφ) of Lφ in Vθ verifies

rθ (λ
−1 Lφ) ≤ 1.

On the other hand, using once more the conformality of the measure ν, we get

‖λ−nLn1‖θ ≥ ‖λ−nLn1‖∞ ≥ ‖λ−nLn1‖L1(ν) = 1

for every integer n ≥ 1, which proves that rθ (λ
−1 L) ≥ 1. The two estimates above imply

rθ (λ
−1 Lφ) = λ−1rθ (Lφ) = 1, which shows that rθ (Lφ) = λ = r(Lφ) and completes the proof

of the lemma. �

We are now in a position to prove the quasi-compactness of the operator λ−1 L and,
moreover, that it has a spectral gap.
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Proposition 4.7 rθ (λ
−1 Lφ) = 1 and the spectrum σ(λ−1 Lφ) of the operator λ−1 Lφ in Vθ

satisfies

σ(λ−1 Lφ) ⊆ {

z ∈ C : |z| ≤ 1
}

.

Moreover, 1 is a simple eigenvalue for λ−1 Lφ , there are no other eigenvalues of modulus
one and the essential spectral radius ress(λ

−1 Lφ) is strictly smaller than one. Furthermore,
the density dμ/dν belongs to Vθ .

Proof Using Naussbaum’s formula for the essential spectral radius (see e.g. [11, p. 709]),
which asserts that

ress(λ
−1 Lφ) = lim

n→∞(inf{‖λ−nLn − L‖θ : L is compact operator }) 1
n ,

and Lemma 4.5 it follows that ress(λ
−1 Lφ) ≤ ξ1 is strictly smaller than one. Hence, there is

only a finite number of eigenvalues with finite-dimensional eigenspaces in {z ∈ σ(λ−1 L) :
|z| > ress}. Since rθ (λ

−1 Lφ) = 1 there must exist some eigenvalue on the unit circle, and we
can write

λ−1 Lφ = �1 +
∑

z∈σ(λ−1 Lφ)

|z|=1

z�z + L0

where �z denotes the projection on the subspace associated to the eigenvalue z ∈ C and
r(L0) < 1. Using that

∑n−1
j=0 zj is uniformly bounded in norm for every n it follows that

∥
∥
∥
∥

1

n

n−1
∑

j=0

λ−j Lj

φ − �1

∥
∥
∥
∥

θ

−−−→
n→∞ 0.

On the other hand, using ‖ · ‖θ ≥ ‖ · ‖∞ ≥ ‖ · ‖L1(ν) one gets

∥
∥
∥
∥
∥

1

n

n−1
∑

j=0

λ−j Lj

φ1

∥
∥
∥
∥
∥

θ

≥
∥
∥
∥
∥
∥

1

n

n−1
∑

j=0

λ−j Lj

φ1

∥
∥
∥
∥
∥

L1(ν)

= 1, for every n ∈ N.

This shows that �1 is nonzero and that h = �1(1) is an eigenfunction for λ−1 Lφ associated
to the eigenvalue 1. Up to a normalization in L1(ν) it is not difficult to see that μ̂ = hν is an
f -invariant probability measure: for every g ∈ C(M)

∫

g ◦ f dμ̂ =
∫

λ−1 Lφ(g ◦ f h)dν =
∫

λ−1 Lφ(h)g dν =
∫

g dμ̂.

Since μ̂ is absolutely continuous with respect to ν then it is an equilibrium state. By unique-
ness of the equilibrium state, μ̂ must coincide with μ and, in particular, dμ/dν = h belongs
to Vθ . In fact the same argument yields that 1 is a simple eigenvalue, thus, the only eigen-
value of modulus one.

It remains only to rule out the existence of other eigenvalues of modulus one distinct
from 1. Let z ∈ C and h′ ∈ Vθ be such that λ−1 Lφh′ = zh′ and |z| = 1. Since h is bounded
from below by some constant C1 > 0 the function ψ defined by h′ = hψ belongs to L2(μ)

because ‖ψ‖L2(μ) ≤ ‖h′‖2∞/C2
1 < ∞. The Koopman operator U : L2(μ) → L2(μ) acts on

each g ∈ L2(μ) by U(g) = g ◦ f . By construction ψ is an eigenfunction for the dual opera-
tor U ∗. Indeed, U ∗(ψ) = zψ because
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∫

(U ∗ψ)g dμ =
∫

ψ(g◦f )dμ =
∫

h′(g◦f )dν =
∫

λ−1 Lφ(h′(g◦f )) dν =
∫

(zh′)g dν.

In consequence, ψ = znUn(ψ) = zn(ψ ◦f n) is measurable with respect to the sigma-algebra
f −n(B) for every n ≥ 1. Since μ is exact (recall Lemma 3.6) then ψ must be constant, which
proves that h′ belongs to the subspace generated by h and consequently z = 1. This shows
that 1 is the only eigenvalue of modulus one and completes the proof of the proposition. �

Corollary 4.8 There are C > 0, ξ ∈ (0,1) such that every � ∈ L1(ν) and � ∈ Vθ satisfy
Cn(�,�) ≤ Cξn‖�‖θ‖�‖L1(ν). Moreover,

∣
∣μ(Qk ∩ f −n(Ql)) − μ(Qk)μ(Ql)

∣
∣≤ Cξnμ(Ql)

for every n ≥ 1 and every pair of cylinders Ql ∈ Q(l) and Qk ∈ Q(k).

Proof Given � ∈ L1(ν) and � ∈ Vθ ,
∫

�(� ◦ f n)dμ =
∫

�h(� ◦ f n)dν =
∫

(λ−nLn)(�h)� dν

for every n ≥ 1. Hence,
∣
∣
∣
∣

∫

�(� ◦ f n)dμ −
∫

�dμ

∫

�dμ

∣
∣
∣
∣
=
∣
∣
∣
∣

∫ [

(λ−nLn)(�h) − h

∫

(�h)dν

]

� dν

∣
∣
∣
∣

≤
∥
∥
∥
∥
(λ−nLn)(�h) − h

∫

(�h)dν

∥
∥
∥
∥

θ

‖�‖L1(ν).

Since h
∫

(�h)dν is the projection of �h in the one-dimensional eigenspace associated to
the eigenvalue 1 it is a consequence of the spectral gap that the previous term is bounded
by Cξn‖�‖θ‖�‖L1(ν). On the other hand, the second claim is an immediate consequence of
the first one provided that we show that the characteristic function 1Q of a cylinder Q ∈ Q(k)

belongs to Vθ . Since osc(·) ≤ 2sup(·), it is clear that

varθ (1Q) =
∑

n≥0

θn
∑

Qn

eSnφ(Qn)osc(1Q,Qn) ≤ 2
∑

n≥0

(θesupφ)n

is finite. In consequence ‖1Q‖θ = 1 + varθ (1Q) is also finite, which proves our claim and
finishes the proof of the corollary. �

Finally, to complete the proof of Corollary A it is enough to prove the following:

Lemma 4.9 Vθ contains the space of α-Hölder observables.

Proof Let g be an α-Hölder continuous observable. Since ‖g‖∞ is finite it remains to esti-
mate varθ (g). Indeed, dividing the sum of the elements in Q(n) according to whether they
belong to B(n) or not, it is not hard to check that there is Cg > 0 such that

varθ (g) ≤ 2‖g‖∞
∑

n≥0

θn#B(n)esupφn + Cg

∑

n≥0

θne(log deg(f )+supφ−cτα)n.

This proves the lemma. �



832 P. Varandas

5 Exponential Distribution of Hitting Times

In this section we combine ideas from [12] and [21] with the weak Gibbs property and the
strong mixing properties of the equilibrium state μ to study the hitting times asymptotics in
Theorem B. For notational simplicity, given Q ∈ Q(n) we set

gQ(t) = μ

(

τQ >
t

μ(Q)

)

.

The strategy to prove Theorem B is to consider a large subset Q(n)
ε of n-cylinders such

that gQ(
√

μ(Q)) behaves essentially as exp(−μ(Q)) for every Q ∈ Q(n)
ε and to explore the

strong mixing property of μ to obtain many instants of independence. We will need some
preliminary results.

Lemma 5.1 [12, Lemma 2] For every measurable set E and all positive t ,

μ

(

τE ≤ t

μ(E)

)

≤ t + μ(E).

If γ1 > 0 is given by Proposition 3.1 then we have the following:

Lemma 5.2 There is K > 0 such that for any ε > 0 there is a subset Q(n)
ε of n-cylinders of

measure at least 1 − ε and satisfying

e−√
μ(Q)(1+Ke−γ1n/2) ≤ gQ(

√

μ(Q)) ≤ e−√
μ(Q)(1−Ke−γ1n/2) (9)

for every Q ∈ Q(n)
ε and every large n.

Proof First observe that if n is large enough and Q ∈ Q(n) arbitrary

− loggQ(
√

μ(Q)) = − log

[

1 − μ

(

τQ ≤
√

μ(Q)

μ(Q)

)]

≤ μ

(

τQ ≤
√

μ(Q)

μ(Q)

)

+
[

μ

(

τQ ≤
√

μ(Q)

μ(Q)

)]2

.

Then Proposition 3.1 and Lemma 5.1 imply that the later sum is bounded from above by√
μ(Q)(1 + Ke−γ1n/2) for some positive constant K , which proves the lower bound in (9).
In the other direction, let Q(n)

ε be the family of n-cylinders that have no self returns in
the time interval [1, ζn] for some ζ > 0: the n-cylinder Q belongs to Q(n)

ε if f j (Q) does
not intersect Q for every 1 ≤ j ≤ ζn. Any element in Q(n) \ Q(n)

ε has short recurrence and is
completely characterized by ζn cylinders of the partition Q. Consequently, #[Q(n) \ Q(n)

ε ] ≤
(#Q)ζn for every n. In particular, if ζ = ζ(ε) is chosen small enough then

μ
(

∪ {Q ∈ Q(n) : Q /∈ Q(n)
ε }

)

≤ (#Q)ζne−γ1n < ε

for every large n. We claim that every Q ∈ Q(n)
ε verifies the upper bound in (9). On the one

hand

− loggQ(
√

μ(Q)) ≥ 1 − gQ(
√

μ(Q)) = μ

(

τQ ≤
√

μ(Q)

μ(Q)

)

.
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Following [12, Lemma 3] and [21, Lemma 5.3], one gets

μ

(

τQ ≤ t

μ(Q)

)

≥ t2

t2 + μ(Q)(1 + t) + t (1 + Ke−γ1n)

for every Q ∈ Q(n)
ε . Together with the previous inequality this shows that

− loggQ(
√

μ(Q)) ≥ μ(Q)

μ(Q)[2 + √
μ(Q)] + √

μ(Q)[1 + Ke−γ1n]
which is larger than

√
μ(Q)(1 − Ke−γ1n/2). This completes the proof of the lemma. �

The strong mixing property of μ guarantees some independence of the system.

Lemma 5.3 There exists C >0 such that if n ≥ 1 is sufficiently large then

sup
s≥√

μ(Q)

∣
∣
∣gQ(

√

μ(Q) + s) − gQ(
√

μ(Q))gQ(s)

∣
∣
∣≤ Cμ(Q)3/4

for every cylinder Q ∈ Q(n).

Proof This proof is similar to the one of [21, Lemma 5.4], which explores the strong mixing
properties of the system. We include a brief sketch of the proof for completeness reasons.

Let Q be any fixed cylinder of Q(n). Given positive t, s and a small � (to be chosen later
on), by invariance of μ it follows that |gQ(t + s) − gQ(t)gQ(s)| is bounded from above by
the sum of the following three terms:

∣
∣
∣
∣
∣
gQ(t + s) − μ

(

τQ /∈
[

0,
t

μ(Q)

]

∪
[

t

μ(Q)
+ �,

t + s

μ(Q)

])
∣
∣
∣
∣
∣
, (10)

∣
∣
∣
∣
∣
μ

(

τQ /∈
[

0,
t

μ(Q)

]

∪
[

t

μ(Q)
+ �,

t + s

μ(Q)

])

− gQ(t)μ

(

τQ /∈
[

�,
s

μ(Q)

])
∣
∣
∣
∣
∣
, (11)

and

gQ(t)

∣
∣
∣
∣
∣
μ

(

τQ /∈
[

�,
s

μ(Q)

])

− μ

(

τQ /∈
[

0,
s

μ(Q)

])
∣
∣
∣
∣
∣
. (12)

Since (10) is the measure of the set of points that do enter Q in the time interval
[ t

μ(Q)
, t

μ(Q)
+ �] then it is bounded by �μ(Q). Similarly, (12) is also bounded by �μ(Q).

For the remaining term, computations analogous to the ones in [21, p. 356] guarantee that

(11) =
∣
∣
∣
∣

∫

g1(g2 ◦ f �+1) dμ −
∫

g1 dμ

∫

g2 dμ

∣
∣
∣
∣
≤ Cξ�+1‖g1‖θ‖g2‖1,

where

g1 = 1Qc

1

h
(λ−1 LQc)

[ t
μ(Q)

]
(h) and g2 =

[ s
μ(Q)

]−�−1
∏

j=0

1Qc ◦ f j ,
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and LQ(g) stands for L(g1Q). Clearly 1
h

∈ Vθ , because h ∈ Vθ and h is bounded away
from zero. Observe that ‖g2‖1 ≤ 1 and that ‖λ−1 Lh‖∞ = ‖h‖∞ is finite. Hence, using that
varθ (f1f2) ≤ varθ (f1)‖f2‖∞ + varθ (f2)‖f1‖∞ then

(11) ≤ Cξ�+1

∥
∥
∥
∥

1Qc

1

h
(λ−1 LQc)

[ t
μ(Q)

]
(h)

∥
∥
∥
∥

θ

≤ Cξ�+1

[

varθ (
1

h
)

∥
∥
∥
∥

1Qc(λ−1 LQc)
[ t
μ(Q)

]
(h)

∥
∥
∥
∥∞

+
∥
∥
∥
∥

1

h

∥
∥
∥
∥

∞
varθ

(

1Qc(λ−1 LQc)
[ t
μ(Q)

]
(h)

)]

≤ C ′ξ�+1

[

1 + varθ

(

(λ−1 LQc)
[ t
μ(Q)

]
(h)

)]

for some positive constant C ′. To estimate the term in the right hand side above we use (7)
in [21, p. 358]: for every N ≥ 1

LN
Qc(h) = h −

N−1
∑

r=0

Lr LQ(h) +
∑

0≤i+j≤N−2

Li LBi,j
(h),

where Bi,j = Q ∩ f −1(Qc) ∩ · · · ∩ f −N+i+j+2(Qc) ∩ f −N+i+j+1(Q) is a cylinder of order
n + N − i − j − 1 contained in Q. So, using the Lasota-Yorke inequality it is not hard to
obtain

varθ (λ
−N LN

Qc (h)) ≤ C ′′(N + N2)varθ (h)

for some positive constant C ′′, and shows that

|gQ(t + s) − gQ(t)gQ(s)| ≤ 2�μ(Q) + Cξ�+1

(

1 + 2C ′′
[

t

μ(Q)

]2)

≤ Cμ(Q)
3
4

for some C > 0 provided that t = √
μ(Q), s ≥ √

μ(Q) and � = μ(Q)− 1
4 . This completes

the proof of the lemma. �

We finish this section with the following:

Proof of Theorem B Let t ≥ 0, n ≥ 1 and ε > 0 be fixed, and let Q(n)
ε be as in the previous

lemma. Take Q ∈ Q(n)
ε and set k = [ t√

μ(Q)
]. The strategy is to divide the estimate on the

distribution of the entrance time gQ(t) in blocks where some independence holds. Write
t = k

√
μ(Q) + r , with 0 ≤ r <

√
μ(Q), and note that

(†)

∣
∣
∣gQ(t) − e−t

∣
∣
∣ ≤

∣
∣
∣gQ(t) − gQ(k

√

μ(Q))

∣
∣
∣+

∣
∣
∣gQ(k

√

μ(Q)) − gQ(
√

μ(Q))k
∣
∣
∣

+
∣
∣
∣gQ(

√

μ(Q))k − e−k
√

μ(Q)
∣
∣
∣+

∣
∣
∣e

−k
√

μ(Q) − e−t
∣
∣
∣.
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The last term in the right hand side above is clearly bounded from above by 2
√

μ(Q), while
we can use the invariance of μ to get

∣
∣
∣gQ(t) − gQ(k

√

μ(Q))

∣
∣
∣= μ

(
k
√

μ(Q)

μ(Q)
< τQ ≤ t

μ(Q)

)

≤ μ

(

0 < τQ ≤
√

μ(Q)

μ(Q)

)

,

which is bounded by
√

μ(Q) + μ(Q) according to Lemma 5.1. Since Q belongs to Q(n)
ε

then (9) holds and the third term in (†) decays exponentially fast with n because it is bounded
from above by

2k
[

− loggQ(
√

μ(Q)) −√

μ(Q)
][

gQ(
√

μ(Q))k + e−k
√

μ(Q)
]

≤ 2k
√

μ(Q)Ke−γ1n/2
[

2e−k
√

μ(Q)(1−Ke−γ1n/2)
]

.

Finally, we deal with the second term in the right hand side of (†). Indeed, it is not difficult
(see e.g. [12, Lemma 6]) to use induction in Lemma 5.3 and obtain

∣
∣
∣gQ(k

√

μ(Q)) − gQ(
√

μ(Q))k
∣
∣
∣≤ C

μ(Q)3/4

1 − gQ(
√

μ(Q))
. (13)

Using the last inequalities in the proof of Lemma 5.2, every Q ∈ Q(n)
ε satisfies 1 −

gQ(
√

μ(Q)) ≥ √
μ(Q)(1 − Ke−γ1n), which guarantees that the second term in (†) satis-

fies
∣
∣
∣gQ(k

√

μ(Q)) − gQ(
√

μ(Q))k
∣
∣
∣≤ μ(Q)3/4

√
μ(Q)(1 − Ke−γ1n)

≤ μ(Q)1/4

and decreases exponentially fast with n. This completes the proof of the theorem. �

6 Fluctuations of the Return Times

This section is devoted to the proof of Theorem C. We explore the exponential asymptotic
distribution of hitting times, the weak Gibbs property of μ and the Central Limit Theorem
to obtain the log-normal distribution of the return times. The following relation between
hitting times and return times, similar to Lemma 4.1 in [21], is a consequence of the good
mixing properties for μ.

Lemma 6.1 Let (tn) be a sequence such that limn→∞ tn/n = +∞. Then

lim
n→∞

∣
∣
∣
∣
μ(Rn > tn) −

∑

Q∈Q(n)

μ(Q)μ(τQ > tn)

∣
∣
∣
∣
= 0.

Proof Since

μ(Rn > t) =
∑

Q∈Q(n)

μ(Q ∩ {τQ > t})

we will estimate the differences μ(Q ∩ {τQ > t}) − μ(Q)μ(τQ > t) for elements Q ∈ Q(n).
In fact, given k < n < r < t and Q ∈ Q(n) write
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(∗) = μ(Q ∩ {τQ > t}) − μ(Q)μ(τQ > t)

≤ μ(Q ∩ {τQ > t}) − μ(Q ∩ τQ /∈ [r, t]) (14)

+ μ(Q ∩ τQ /∈ [r, t]) − μ(Q)μ(τQ /∈ [r, t]) (15)

+ μ(Q)
[

μ(τQ /∈ [r, t]) − μ(τQ > t)
]

. (16)

It is clear that (16) coincides with μ(Q)μ(τQ < r), which is bounded from above by
rμ(Q)2, because μ(τQ < r) ≤ μ(∪j≤rf

−jQ). Moreover, by exponential decay of corre-
lations

|(15)| ≤
∣
∣
∣
∣
∣
μ

(

Q ∩ f −r

(
t−r
⋂

j=0

f −j (Qc)

)

− μ(Q)μ

(

f −r

(
t−r
⋂

j=0

f −j (Qc)

)))∣
∣
∣
∣
∣
≤ Kξr.

On the other hand, |(14)| is bounded from above by
∑r

j=0 μ(Q ∩ f −j (Q)). To deal with
this last term we will consider differently whether Q belongs to the set E<k of n-cylinders
such that there exists 0 ≤ i ≤ k so that f −i (Q) ∩ Q �= ∅, or not. In fact, summing up over
elements in Q(n) and using the exponential decay of correlations it follows that

∑

Q∈Q(n)

|(14)| ≤
∑

Q∈E<k

r
∑

j=0

μ(Q ∩ f −j (Q)) +
∑

Q∈Ec
<k

r
∑

j=0

μ(Q ∩ f −j (Q))

≤ rμ(E<k) +
∑

Q∈Ec
<k

r
∑

j=k

[K ′ξ j + μ(Q)]μ(Q)

≤ rμ(E<k) + r[K ′ξk + e−γ1n]

where K ′ is a constant that involves the constant K from decay of correlations and an upper
bound for ‖1Q‖θ . Using that μ(E<k) ≤ #Q(k)e−γ1n and the previous estimates we obtain

∑

Q∈Q(n)

|(∗)| ≤ re−γ1n + K#Q(n)ξ r + r#Q(k)e−γ1n + r[K ′ξk + e−γ1n].

The previous inequality holds for r(n) = min{tn, n2} and k(n) = [ γ1
2 log deg(f )

n]. In fact, we
get

∣
∣
∣
∣
μ(Rn > tn) −

∑

Q∈Q(n)

μ(Q)μ(τQ > tn)

∣
∣
∣
∣

≤ n2e−γ1n + K#Q deg(f )nξ r(n) + n2#Qe−γ1n/2 + n2[K ′ξk(n) + e−γ1n].

The expression in the right hand side above tends to zero as n → ∞. Indeed, note that the
second term in the right hand side above tends to zero because r(n)/n → ∞, by construc-
tion. This completes the proof of the lemma. �

Proof of Theorem C Let φ be an Hölder continuous potential as above such that σ =
σ(φ) > 0, and fix ε > 0 arbitrary small. Given t ∈ R and n ≥ 1
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μ

(
logRn − nhμ(f )

σ
√

n
> t

)

= μ(Rn > enhμ(f )eσ t
√

n)

=
∑

Q∈Q(n)

μ(Q ∩ {τQ > enhμ(f )eσ t
√

n}).

Let Q(n)
ε be the family of cylinders given by Theorem B. Since ∪{Q ∈ Q(n)

ε } has μ-measure
at least 1 − ε and the first entrance time τQ of every cylinder Q ∈ Q(n)

ε has exponential
distribution up to a small error, then

μ

(
logRn − nhμ(f )

σ
√

n
> t

)

=
∑

Q∈Q(n)
ε

μ(Q)μ
(

τQ > enhμ(f )eσ t
√

n
)

+ O(e−βn) + O(ε).

This is a consequence of the previous Lemma 6.1 with tn = enhμ(f )+σ t
√

n. Since ε > 0 was
chosen arbitrary, to show the log-normal distribution of the return times we are left to prove
the convergence

lim
n→∞

[
∑

Q∈Q(n)
ε

μ(Q)e−μ(Q)enhμ(f )eσ t
√

n

]

= 1√
2π

∫ ∞

t

e− x2
2 dx + O(ε). (17)

By Lemma 3.7 and Corollary 3.8, there is a ∈ N and for μ-almost every x there is a sequence
(Kn)n (depending on x) satisfying Kn(x) ≤ na for all but finitely many values of n and
such that Kn(x)−1e−Pn+Snφ(x) ≤ μ(Qn(x)) ≤ Kn(x)e−Pn+Snφ(x) for every n ≥ 1. Using also
μ(∪{Q : Q /∈ Q(n)

ε }) < ε and hμ(f ) + ∫

φ dμ = Ptop(f,φ) = P , for any ρ > 0

∑

Q∈Q(n)
ε

μ(Q)e−μ(Q)enhμ(f )eσ t
√

n

=
∫

∪{Q:Q∈Q(n)
ε }

e−μ(Q(x))enhμ(f )eσ t
√

n

dμ(x)

≥ e−e−ρσ
√

n

[

μ

(

x ∈ M | e−μ(Qn(x))enhμ(f )eσ t
√

n

> e−e−ρσ
√

n

)

− ε

]

≥ e−e−ρσ
√

n

[

μ

(

x ∈ M | −Snφ(x) + n
∫

φdμ

σ
√

n
> t + ρ + 1√

n
logKn(x)

)

− ε

]

.

Since φ belongs to Vθ (recall Lemma 4.9) and it satisfies the Central Limit Theorem (see
Corollary A), taking the limit as n → ∞ and ρ → 0 we obtain that

lim inf
n→∞

[
∑

Q∈Q(n)
ε

μ(Q)e−μ(Q)enhμ(f )eσ t
√

n

]

≥ 1√
2π

∫ ∞

t

e− x2
2 dx − ε.

The upper estimate in (17) is obtained analogously. Indeed, for any ρ > 0

∑

Q∈Q(n)
ε

μ(Q)e−μ(Q)enhμ(f )eσ t
√

n =
∫

∪{Q:Q∈Q(n)
ε }

e−μ(Q(x))enhμ(f )eσ t
√

n

dμ(x)

≤ μ
(

x ∈ ∪{Q : Q ∈ Q(n)
ε } | e−μ(Qn(x))enhμ(f )eσ t

√
n

> e−e−ρσ
√

n
)
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≤ ee−ρσ
√

n
[

μ
(

x ∈ M | e−μ(Qn(x))enhμ(f )eσ t
√

n

> e−e−ρσ
√

n
)

+ ε
]

≤ ee−ρσ
√

n

[

μ

(

x ∈ M | −Snφ(x) + n
∫

φdμ

σ
√

n
> t + ρ − 1√

n
logKn(x)

)

+ ε

]

,

taking the limit as n → ∞ and ρ → 0 one gets

lim sup
n→∞

[
∑

Q∈Q(n)
ε

μ(Q)e−μ(Q)enhμ(f )eσ t
√

n

]

≤ 1√
2π

∫ ∞

t

e− x2
2 dx + ε,

which proves the upper bound in (17). The proof of the theorem is now complete. �
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